Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
Medicine (Baltimore) ; 103(16): e37831, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640322

RESUMO

Oral squamous cell carcinoma (OSCC) is a malignant tumor that occurs in oral cavity and is dominated by squamous cells. The relationship between CDK1, CCNA2, and OSCC is still unclear. The OSCC datasets GSE74530 and GSE85195 configuration files were downloaded from the Gene Expression Omnibus (GEO) database and were derived from platforms GPL570 and GPL6480. Differentially expressed genes (DEGs) were screened. The weighted gene co-expression network analysis, functional enrichment analysis, gene set enrichment analysis, construction and analysis of protein-protein interaction (PPI) network, Comparative Toxicogenomics Database analysis were performed. Gene expression heatmap was drawn. TargetScan was used to screen miRNAs that regulate central DEGs. A total of 1756 DEGs were identified. According to Gene Ontology (GO) analysis, they were predominantly enriched in processes related to organic acid catabolic metabolism, centromeric, and chromosomal region condensation, and oxidoreductase activity. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the DEGs were mainly concentrated in metabolic pathways, P53 signaling pathway, and PPAR signaling pathway. Weighted gene co-expression network analysis was performed with a soft-thresholding power set at 9, leading to the identification of 6 core genes (BUB1B, CCNB1, KIF20A, CCNA2, CDCA8, CDK1). The gene expression heatmap revealed that core genes (CDK1, CCNA2) were highly expressed in OSCC samples. Comparative Toxicogenomics Database analysis demonstrated associations between the 6 genes (BUB1B, CCNB1, KIF20A, CCNA2, CDCA8, CDK1) and oral tumors, precancerous lesions, inflammation, immune system disorders, and tongue tumors. The associated miRNAs for CDK1 gene were hsa-miR-203a-3p.2, while for CCNA2 gene, they were hsa-miR-6766-3p, hsa-miR-4782-3p, and hsa-miR-219a-5p. CDK1 and CCNA2 are highly expressed in OSCC. The higher the expression of CDK1 and CCNA2, the worse the prognosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Redes Reguladoras de Genes , Neoplasias Bucais/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Neoplasias de Cabeça e Pescoço/genética , Biologia Computacional , Regulação Neoplásica da Expressão Gênica/genética , Ciclina A2/genética , Proteína Quinase CDC2/genética
2.
Cell Rep ; 43(3): 113875, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38451818

RESUMO

Liver injury stimulates hepatocyte replication and hepatic stellate cell (HSC) activation, thereby driving liver regeneration. Aberrant HSC activation induces liver fibrosis. However, mechanisms underlying liver regeneration and fibrosis remain poorly understood. Here, we identify hepatic Snai1 and Snai2 as important transcriptional regulators for liver regeneration and fibrosis. Partial hepatectomy or CCl4 treatment increases occupancies of Snai1 and Snai2 on cyclin A2 and D1 promoters in the liver. Snai1 and Snai2 in turn increase promoter H3K27 acetylation and cyclin A2/D1 expressions. Hepatocyte-specific deletion of both Snai1 and Snai2, but not one alone, suppresses liver cyclin A2/D1 expression and regenerative hepatocyte proliferation after hepatectomy or CCl4 treatments but augments CCl4-stimulated HSC activation and liver fibrosis. Conversely, Snai2 overexpression in the liver enhances hepatocyte replication and suppresses liver fibrosis after CCl4 treatment. These results suggest that hepatic Snai1 and Snai2 directly promote, via histone modifications, reparative hepatocyte replication and indirectly inhibit liver fibrosis.


Assuntos
Ciclina A2 , Regeneração Hepática , Animais , Camundongos , Ciclina A2/metabolismo , Hepatectomia , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Regeneração Hepática/fisiologia
3.
Cell Signal ; 117: 111098, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38365111

RESUMO

Periodontitis is an oral inflammatory disease that causes alveolar bone destruction by activating osteoclast. FTO, a crucial demethylase of N6-methyladenosine(m6A), exerts essential function in maintaining bone homeostasis. However, the effects of FTO on periodontitis-related bone destruction remain unknown. To investigate its role in inflammatory osteoclastogenesis, we overexpressed FTO in osteoclast precursor cells; RNA-seq revealed that differentially expressed genes were mainly enriched in cell cycle, DNA replication, DNA damage response and apoptosis in FTO overexpression cells during RANKL and LPS-stimulated osteoclast differentiation. FTO overexpression upregulated the expression of S phase-related proteins (Cyclin A2, CDK2), and decreased the expression of DNA damage related proteins in osteoclast precursor cells. FTO promoted cell proliferation demonstrated by EdU and CCK8 assay, and reduced apoptotic rate and the expression of apoptosis-related proteins in osteoclast precursor cell. Conversely, FTO inhibitor FB23-2 produced the reverse effect. Mechanistically, FTO overexpression promoted the stability of CyclinA2 and CDK2 mRNA. These results were consistent in m6A binding protein YTHDF2 knockdown cells. Moreover, FB23-2 suppressed osteoclast-related gene expression, osteoclast formation and bone resorption ability. Treatment of FB23-2 reduced the alveolar bone loss in mice of experimental periodontitis. Collectively, our findings revealed that FTO enhanced the mRNA stability and expression of Cyclin A2, CDK2 in a YTHDF2-dependent manner in osteoclast precursor cells, promoted cell proliferation and inhibited cell apoptosis. FB23-2 reduced the formation of osteoclasts, resulted in alleviating the bone destruction in periodontitis mice. These findings indicated that FTO might be the potential target of the treatment of bone loss in periodontitis.


Assuntos
Reabsorção Óssea , Periodontite , Camundongos , Animais , Osteoclastos/metabolismo , Ciclina A2/metabolismo , Diferenciação Celular , Reabsorção Óssea/metabolismo , Apoptose , Proliferação de Células , Ligante RANK/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato
4.
Urol Int ; 108(2): 128-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38224675

RESUMO

INTRODUCTION: The aim was to evaluate the prognostic value of altered Cyclin A2 (CCNA2) gene expression in upper tract urothelial carcinoma (UTUC) and to assess its predictive potential as a prognostic factor for overall survival (OS) and disease-free survival. METHODS: 62 patients who underwent surgical treatment for UTUC were included. Gene expression of CCNA2, MKI67, and p53 was analyzed by quantitative reverse transcriptase polymerase chain reaction. Survival analyses were performed using the Kaplan-Meier method and the log-rank test. For Cox regression analyses, uni- and multivariable hazard ratios were calculated. Spearman correlation was used to analyze correlation of CCNA2 expression with MKI67 and p53. RESULTS: The median age of the cohort was 73 years, and it consisted of 48 males (77.4%) and 14 females (22.6%). Patients with high CCNA2 expression levels showed longer OS (HR 0.33; 95% CI: 0.15-0.74; p = 0.0073). Multivariable Cox regression analyses identified CCNA2 overexpression (HR 0.37; 95% CI: 0.16-0.85; p = 0.0189) and grading G2 (vs. G3) (HR 0.39; 95% CI: 0.17-0.87; p = 0.0168) to be independent predictors for longer OS. CCNA2 expression correlated positively with MKI67 expression (Rho = 0.4376, p = 0.0005). CONCLUSION: Low CCNA2 expression is significantly associated with worse OS. Thus, CCNA2 might serve as a potential biomarker in muscle-invasive UTUC and may be used to characterize a subset of patients having an unfavorable outcome and for future risk assessment scores.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Neoplasias Urológicas , Masculino , Feminino , Humanos , Idoso , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/cirurgia , Ciclina A2 , Proteína Supressora de Tumor p53 , Estudos Retrospectivos , Prognóstico , Biomarcadores , Músculos/patologia , Neoplasias Urológicas/genética , Neoplasias Urológicas/cirurgia
5.
BMC Cancer ; 23(1): 995, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853361

RESUMO

BACKGROUND: Endometrial carcinoma (EC) is a malignant tumor of the female reproductive tract that has been associated with increased morbidity and mortality. This study aimed to identify biomarkers and potential therapeutic targets for EC. METHODS: A publicly available transcriptome data set comprising 587 EC cases was subjected to a comprehensive bioinformatics analysis to identify candidate genes responsible for EC occurrence and development. Next, we used clinical samples and cell experiments for validation. RESULTS: A total of 1,617 differentially expressed genes (DEGs) were identified. Analysis of patient survival outcomes revealed that BUB1, BUB1B, CCNA2, and CDCA8 were correlated with prognosis in patients with EC. Moreover, assessment of clinical samples confirmed that BUB1, BUB1B, CCNA2 and CDCA8 were strongly expressed in EC tissues. Additionally, bioinformatics and luciferase reporter assays confirmed that miR-524-5p can target and regulate these four genes. Overexpression of miR-524-5p significantly inhibited EC Ishikawa cells viability, migration and invasion. Inhibition of miR-524-5p showed the opposite results. CONCLUSIONS: Expression of miR-524-5p reduced the migration and invasion of Ishikawa EC cells, and decreased BUB1, BUB1B, CCNA2, and CDCA8 expression. miR-524-5p, as well as BUB1, BUB1B, CCNA2, and CDCA8, may be clinically relevant biomarkers for the diagnosis and treatment of EC.


Assuntos
Neoplasias do Endométrio , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Biomarcadores , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina A2/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
6.
Nature ; 619(7969): 363-370, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407814

RESUMO

In mammalian cells, the decision to proliferate is thought to be irreversibly made at the restriction point of the cell cycle1,2, when mitogen signalling engages a positive feedback loop between cyclin A2/cyclin-dependent kinase 2 (CDK2) and the retinoblastoma protein3-5. Contrary to this textbook model, here we show that the decision to proliferate is actually fully reversible. Instead, we find that all cycling cells will exit the cell cycle in the absence of mitogens unless they make it to mitosis and divide first. This temporal competition between two fates, mitosis and cell cycle exit, arises because cyclin A2/CDK2 activity depends upon CDK4/6 activity throughout the cell cycle, not just in G1 phase. Without mitogens, mitosis is only observed when the half-life of cyclin A2 protein is long enough to sustain CDK2 activity throughout G2/M. Thus, cells are dependent on mitogens and CDK4/6 activity to maintain CDK2 activity and retinoblastoma protein phosphorylation throughout interphase. Consequently, even a 2-h delay in a cell's progression towards mitosis can induce cell cycle exit if mitogen signalling is lost. Our results uncover the molecular mechanism underlying the restriction point phenomenon, reveal an unexpected role for CDK4/6 activity in S and G2 phases and explain the behaviour of all cells following loss of mitogen signalling.


Assuntos
Ciclo Celular , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Fase G2 , Fase S , Animais , Ciclina A2/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/deficiência , Quinase 4 Dependente de Ciclina/metabolismo , Mitógenos/deficiência , Mitógenos/metabolismo , Mitose , Fosforilação , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Quinase 6 Dependente de Ciclina/deficiência , Quinase 6 Dependente de Ciclina/metabolismo , Fase G1
7.
Int J Med Sci ; 20(7): 901-917, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324189

RESUMO

DPY30, a core subunit of the SET1/MLL histone H3K4 methyltransferase complexes, plays an important role in diverse biological functions through the epigenetic regulation of gene transcription, especially in cancer development. However, its involvement in human colorectal carcinoma (CRC) has not been elucidated yet. Here we demonstrated that DPY30 was overexpressed in CRC tissues, and significantly associated with pathological grading, tumor size, TNM stage, and tumor location. Furthermore, DPY30 knockdown remarkably suppressed the CRC cell proliferation through downregulation of PCNA and Ki67 in vitro and in vivo, simultaneously induced cell cycle arrest at S phase by downregulating Cyclin A2. In the mechanistic study, RNA-Seq analysis revealed that enriched gene ontology of cell proliferation and cell growth was significantly affected. And ChIP result indicated that DPY30 knockdown inhibited H3 lysine 4 trimethylation (H3K4me3) and attenuated interactions between H3K4me3 with PCNA, Ki67 and cyclin A2 respectively, which led to the decrease of H3K4me3 establishment on their promoter regions. Taken together, our results demonstrate overexpression of DPY30 promotes CRC cell proliferation and cell cycle progression by facilitating the transcription of PCNA, Ki67 and cyclin A2 via mediating H3K4me3. It suggests that DPY30 may serve as a potential therapeutic molecular target for CRC.


Assuntos
Neoplasias Colorretais , Ciclina A2 , Humanos , Ciclina A2/genética , Fatores de Transcrição , Epigênese Genética , Antígeno Ki-67 , Antígeno Nuclear de Célula em Proliferação , Proliferação de Células/genética , Ciclo Celular/genética , Neoplasias Colorretais/genética
8.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047236

RESUMO

We have previously reported Tceal7 as a muscle-specific gene that represses myoblast proliferation and promotes myogenic differentiation. The regulatory mechanism of Tceal7 gene expression has been well clarified recently. However, the underlying mechanism of Tceal7 function in skeletal muscle development remains to be elucidated. In the present study, we have generated an MCK 6.5 kb-HA-Tceal7 transgenic model. The transgenic mice are born normally, while they have displayed defects in the growth of body weight and skeletal muscle myofiber during postnatal development. Although four RxL motifs have been identified in the Tceal7 protein sequence, we have not detected any direct protein-protein interaction between Tceal7 and Cyclin A2, Cyclin B1, Cylin D1, or Cyclin E1. Further analysis has revealed the interaction between Tceal7 and Cdk1 instead of Cdk2, Cdk4, or Cdk6. Transgenic overexpression of Tceal7 reduces phosphorylation of 4E-BP1 Ser65, p70S6K1 Thr389, and Cdk substrates in skeletal muscle. In summary, these studies have revealed a novel mechanism of Tceal7 in skeletal muscle development.


Assuntos
Ciclina A2 , Desenvolvimento Muscular , Animais , Camundongos , Sequência de Aminoácidos , Ciclina A2/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Fosforilação
9.
Oncol Res Treat ; 46(6): 246-258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37062286

RESUMO

INTRODUCTION: Small cell lung cancer (SCLC) is a special type of lung cancer sensitive to radiotherapy and chemotherapy but is prone to drug resistance and recurrence and has a very poor prognosis. This study aimed to explore the potential biomarkers and therapeutic targets for SCLC. METHODS: After batch normalization of GSE40275, GSE1037, and GSE44447 datasets, R was used to screen SCLC's differentially expressed genes (DEGs) and hub genes. We used immunohistochemistry (IHC) to assess the tissue's expression level of the hub gene. The clinical value of the hub gene was further evaluated based on the collected clinical-pathological data. RESULTS: In this study, a total of 230 DEGs (133 upregulated and 97 downregulated) were screened by the R package. The IHC showed that the expression of CCNA2 and CCNE2 in SCLC tissues was significantly higher than that in normal tissues (p < 0.01). Overexpression of CCNA2 was closely associated with the extensive period of NCCN (p = 0.004), tumor position (p = 0.046), and clinical stage (p = 0.002). The high expression levels of CCNE2 were related to high survival in chemotherapy patients (p = 0.019). CONCLUSION: CCNA2 and CCNE2 may serve as potential biomarkers of diagnosis and treatment for SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Ciclina A2/genética , Ciclina A2/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Ciclinas/genética , Ciclinas/metabolismo , Prognóstico , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica
10.
Cell Cycle ; 22(5): 565-579, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36310381

RESUMO

The limitation of human dental pulp stem cells (DPSCs), which have potential application value in regenerative medicine, is that they are prone to age in vitro. Studies have shown adrenomedullin (ADM) is believed to promote the proliferation of human DPSCs, but whether it can also affect aging remains to be investigated. A lentivirus vector was used to construct human DPSCs overexpressing ADM. Senescence tests were carried out on cells of the 7th and 15th passage. Transcriptome analysis was conducted to analyze microRNA expression regulation changes after human DPSCs overexpressed ADM. H2O2 induced the aging model of human DPSCs, and we examined the mechanism of recovery of aging through transfection experiments with miR-152 mimic, pCDH-CCNA2, and CCNA2 siRNA. Overexpression of ADM significantly upregulated the G2/M phase ratio of human DPSCs in natural passage culture (P = 0.001) and inhibited the expression of p53 (P = 0.014), P21 WAF1 (P = 0.015), and P16 INK4A (P = 0.001). Decreased ROS accumulation was observed in human DPSCs during long-term natural passage (P = 0.022). Transcriptome analysis showed that miR-152 was significantly upregulated during human DPSC senescence (P = 0.001) and could induce cell senescence by directly targeting CCNA2. Transfection with miR-152 mimic significantly reversed the inhibitory effect of ADM overexpression on p53 (P = 0.006), P21 WAF1 (P = 0.012), and P16 INK4A (P = 0.01) proteins in human DPSCs (H2O2-induced). In contrast, pCDH-CCNA2 weakened the effect of the miR-152 mimic, thus promoting cell proliferation and antiaging. ADM-overexpressing human DPSCs promote cell cycle progression and resist cellular senescence through CCNA2 expression promotion by inhibiting miR-152.


Assuntos
Adrenomedulina , MicroRNAs , Humanos , Adrenomedulina/genética , Adrenomedulina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Polpa Dentária/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Células-Tronco/metabolismo , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Ciclina A2/metabolismo
11.
PLoS One ; 17(12): e0278408, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36454788

RESUMO

In endometrial cancer, occult high-risk subtypes (rooted in histomorphologically low-risk disease) with insensitivity to adjuvant therapies impede improvements in therapeutic efficacy. Therefore, we aimed to assess the ability of molecular high-risk (MHR) and low-risk (MLR) ECPPF (E2F1, CCNA2, POLE, PPP2R1A, FBXW7) stratification to profile recurrence in early, low-risk endometrioid endometrial cancer (EEC) and insensitivity to platinum-based chemotherapy or radiotherapy (or both) in high-risk EEC. Using The Cancer Genome Atlas endometrial cancer database, we identified 192 EEC cases with available DNA sequencing and RNA expression data. Molecular parameters were integrated with clinicopathologic risk factors and adverse surveillance events. MHR was defined as high (-H) CCNA2 or E2F1 log2 expression (≥2.75), PPP2R1A mutations (-mu), or FBXW7mu; MLR was defined as low (-L) CCNA2 and E2F1 log2 expression (<2.75). We assessed 164 cases, plus another 28 with POLEmu for favorable-outcomes comparisons. MHR and MLR had significantly different progression-free survival (PFS) rates (P < .001), independent of traditional risk factors (eg, TP53mu), except for stage IV disease. PFS of CCNA2-L/E2F1-L paralleled that of POLEmu. ECPPF status stratified responses to adjuvant therapy in stage III-IV EEC (P < .01) and profiled stage I, grade 1-2 cases with risk of recurrence (P < .001). MHR was associated with CTNNB1mu-linked treatment failures (P < .001). Expression of homologous recombination repair (HR) and cell cycle genes was significantly elevated in CCNA2-H/E2F1-H compared with CCNA2-L/E2F1-L (P<1.0E-10), suggesting that HR deficiencies may underlie the favorable PFS in MLR. HRmu were detected in 20.7%. No treatment failures were observed in high-grade or advanced EEC with HRmu (P = .02). Favorable PFS in clinically high-risk EEC was associated with HRmu and MLR ECPPF (P < .001). In summary, MLR ECPPF and HRmu were associated with therapeutic efficacy in EEC. MHR ECPPF was associated with low-risk, early-stage recurrences and insensitivity to adjuvant therapies.


Assuntos
Carcinoma Endometrioide , Neoplasias do Endométrio , Feminino , Humanos , Genes cdc , Proteína 7 com Repetições F-Box-WD/genética , Genes Reguladores , Fatores de Transcrição , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/terapia , Fator de Transcrição E2F1 , Ciclina A2 , Proteína Fosfatase 2/genética
12.
Medicine (Baltimore) ; 101(42): e30581, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36281185

RESUMO

BACKGROUND: Breast cancer (BC) has become the leading cause of death for women's malignancies and increasingly threatens the health of women worldwide. However, there is a lack of effective targeted drugs for basal-like BC. Therefore, biomarkers related to the prognosis of early BC need to be identified. METHODS: The RNA-seq data of 87 cases of early basal-like BC and 111 cases of normal breast tissue from The Cancer Genome Atlas were explored by the weighted gene co-expression network analysis method and Limma package. Then, intersected genes were identified, and hub genes were selected by the maximal clique centrality method. The prognostic effect of the hub genes was also evaluated in early basal-like BC. RESULTS: In total, 601 IGs were identified in this study. An APPI network was constructed, and the top 10 hub genes were selected, namely, cyclin B1, cyclin A2, cyclin-dependent kinase 1, cell division cycle 20, DNA topoisomerase II alpha, BUB1 mitotic checkpoint serine/threonine kinase, aurora kinase B (AURKB), cyclin B2, kinesin family member 11, and assembly factor for spindle microtubules. Only AURKB was found to be significantly associated with the overall prognosis of early basal-like BC. The immune cell infiltration analysis showed that the infiltration numbers of CD4 + T cells and naïve CD8 + T cells were positively correlated with the AURKB expression level, while those of naïve B cells and macrophage M2 cells were negatively correlated with the AURKB expression level in basal-like BC. CONCLUSION: AURKB might be a potential prognostic indicator in early basal-like BC.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Aurora Quinase B/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Proteína Quinase CDC2/genética , Ciclina A2/genética , Ciclina B1 , Ciclina B2/genética , DNA Topoisomerases Tipo II/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Cinesinas/genética , Prognóstico
13.
Int J Mol Sci ; 23(18)2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142617

RESUMO

Blood-based preparations are used in clinical practice for the treatment of several eye disorders. The aim of this study is to analyze the effect of freeze-drying blood-based preparations on the levels of growth factors and wound healing behaviors in an in vitro model. Platelet-rich plasma (PRP) and serum (S) preparations from the same Cord Blood (CB) sample, prepared in both fresh frozen (FF) and freeze-dried (FD) forms (and then reconstituted), were analyzed for EGF and BDNF content (ELISA Quantikine kit). The human MIO-M1 glial cell line (Moorfield/Institute of Ophthalmology, London, UK) was incubated with FF and FD products and evaluated for cell migration with scratch-induced wounding (IncuCyte S3 Essen BioScience), proliferation with cyclin A2 and D1 gene expression, and activation with vimentin and GFAP gene expression. The FF and FD forms showed similar concentrations of EGF and BDNF in both the S and PRP preparations. The wound healing assay showed no significant difference between the FF and FD forms for both S and PRP. Additionally, cell migration, proliferation, and activation did not appear to change in the FD forms compared to the FF ones. Our study showed that reconstituted FD products maintained the growth factor concentrations and biological properties of FF products and could be used as a functional treatment option.


Assuntos
Ciclina A2 , Plasma Rico em Plaquetas , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proliferação de Células , Ciclina A2/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Sangue Fetal , Humanos , Plasma Rico em Plaquetas/metabolismo , Vimentina/metabolismo , Cicatrização/fisiologia
14.
Infect Genet Evol ; 103: 105337, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835355

RESUMO

Background HTLV-1-associated myelopathy (HAM/TSP) is a progressive neurodegenerative inflammatory condition of HTLV-1 infection. Viral-host interactions are a significant contributor to the symptoms of HTLV-1-associated diseases. Therefore, in this study, the expression of the main regulatory viral factors and proviral load (PVL) and two host transcription molecules were evaluated in HAM/TSP patients. Materials and methods The study population included 17 HAM/TSP patients, 20 asymptomatic carriers (ACs), and 19 healthy controls (HCs). RNA and DNA were extracted from PBMCs for assessment of the gene expressions and PVL assessment using RT-qPCR and TaqMan method. Results HTLV-1-PVL was higher in HAM/TSPs (395.80 ± 99.69) than ACs (92.92 ± 29.41) (P = 0.001). The Tax expression in HAM/TSPs (7.8 ± 5.7) was strongly higher than ACs (0.06 ± 0.04) (P = 0.02), while HTLV-1-HBZ was only increased around three times in HAM/TSPs (3.17), compared to ACs (1.20) and not significant. The host IRF1 expression in HAM/TSPs (0.4 ± 0.31) was higher than ACs (0.09 ± 0.05) (P = 0.02) and also HCs (0.16 ± 0.07) (P = 0.5), but lower in ACs than HCs (p = 0.01). Although, in HAM/TSPs (0.13 ± 0.09) and ACs (0.03 ± 0.02) CCNA-2 expression was statistically fewer than HCs (0.18 ± 0.06) (P = 0.03, P = 0.001, respectively), in HAM/TSP was higher than ACs (P = 0.1), but did not meet a 95% confidence interval. Conclusion The study showed that HTLV-1-PVL and Tax, along with host IRF-1, could be considered biomarkers in HAM/TSP development. Furthermore, IRF-1, as an essential transcription factor, can be considered a pivotal target in HAM/TSPs treatment.


Assuntos
Ciclina A2 , Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Fator Regulador 1 de Interferon , Paraparesia Espástica Tropical , Proteínas dos Retroviridae , Fatores de Transcrição de Zíper de Leucina Básica/genética , Coevolução Biológica , Ciclina A2/genética , Genes pX , Infecções por HTLV-I/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Fator Regulador 1 de Interferon/genética , Paraparesia Espástica Tropical/genética , Paraparesia Espástica Tropical/virologia , Provírus/genética , Proteínas dos Retroviridae/genética , Carga Viral
15.
Oxid Med Cell Longev ; 2022: 5910575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401923

RESUMO

Background: Cancer is a major threat to human health worldwide. Although recent innovations and advances in early detection and effective therapies such as targeted drugs and immune checkpoint inhibitors have saved more lives of cancer patients and improved their quality of life, our knowledge about cancer remains largely unknown. CCNA2 belongs to the cell cyclin family and has been demonstrated to be a tumorigenic gene in multiple solid tumor types. The aim of the present study was to make a comprehensive analysis on the role of CCNA2 at a pancancer level. Methods: Multidatabases were collected to evaluate the different expression, prognostic value, DNA methylation, tumor mutation burden, microsatellite instability, mismatch repair, tumor immune microenvironment, and drug sensitivity of CCNA2 across pancancer. IHC was utilized to validate the expression and prognostic value of CCNA2 in ccRCC patients from SMMU cohort. Results: CCNA2 was differentially expressed in most cancer types vs. normal tissues. CCNA2 may significantly influence the prognosis of multiple cancer types, especially clear cell renal cell carcinoma (ccRCC). CCNA2 was also frequently mutated in most cancer types. Notably, CCNA2 was significantly correlated with immune cell infiltration and immune checkpoint inhibitory genes. In addition, CCNA2 was also strongly related to drug resistance. Conclusion: CCNA2 may prove to be a new biomarker for prognostic prediction, tumor immunity assessment, and drug susceptibility evaluation in pancancer level, especially in ccRCC.


Assuntos
Carcinoma de Células Renais , Ciclina A2 , Neoplasias Renais , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Ciclina A2/genética , Humanos , Neoplasias Renais/genética , Qualidade de Vida , Microambiente Tumoral/genética
16.
Clin Exp Pharmacol Physiol ; 49(6): 652-660, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35274760

RESUMO

MCTS1 Re-Initiation and Release Factor (MCTS1) has been characterised as an oncoprotein in some cancers. In this study, we explored the expression of MCTS1 in laryngeal squamous cell carcinoma (LSCC) and its regulatory effects on the proliferation and cell-cycle progression of tumour cells, as well as the underlying mechanisms. The data from the Cancer Genome Atlas was used to analyse MCTS1 expression and its correlation with survival outcomes in LSCC patients. Subsequent in vitro cellular and molecular studies were performed based on representative LSCC cell lines. Results showed that the upregulation of MCTS1 in LSCC is linked to poor progression-free survival (PFS) and disease-specific survival (DSS). In TU177 and AMC-HN-8 cells, MCTS1 exerted positive regulations on cell viability, colony formation, cell cycle progression, and the expression of CDK1, CDK2, cyclin A2, and cyclin B1. Co-IP assay confirmed mutual interaction between MCTS1 and LARP7, mainly in the cytoplasm. Cycloheximide (CHX) chase and co-IP assay of ubiquitination showed that MCTS1 could increase LARP7 protein half-life and reduce its poly-ubiquitination. LARP7 overexpression enhanced the viability and colony formation of LSCC cells and also elevated the expression of CDK1, CDK2, cyclin A2, and cyclin B1. In addition, its overexpression partly reversed the negative influence of MCTS1 knockdown. In summary, this study confirmed that the expression of MCTS1 might be an indicator of unfavourable prognosis for patients with LSCC. Mechanically, it promotes LSCC cell viability and proliferation via interacting with LARP7 and reducing its proteasomal-mediated degradation.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , MicroRNAs , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina A2/genética , Ciclina A2/metabolismo , Ciclina B1/genética , Ciclina B1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patologia , MicroRNAs/genética , Proteínas Oncogênicas/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
17.
Bioengineered ; 13(3): 7277-7292, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35246013

RESUMO

This study aimed to elucidate the specific anticancer mechanism of 6-methoxyflavone in HeLa cells. A total of 178 putative targets of 6-methoxyflavone were obtained from the PharmMapper database. Microarray analyses, transcriptome sequencing analyses, functional enrichment analyses, and gene set enrichment analyses were performed to preliminarily explore the roles and mechanisms of the 178 targets in cervical cancer. Cell counting kit-8, cell cycle assays, polymerase chain reactions, and western blotting were used to clarify the mechanism of action of 6-methoxyflavone. Molecular docking and noncovalent interaction analyses were performed to further confirm the mechanism of action in three-dimensional structures. Functional enrichment analyses and gene set enrichment analyses indicated that high mRNA expression of cyclin A2 (CCNA2) and cyclin-dependent kinase 2 (CDK2) stimulated cell cycle progression in cervical cancer. Cell proliferation and cycle assays, transcriptome sequencing, polymerase chain reactions, and western blotting revealed that 6-methoxyflavone inhibited HeLa cell proliferation and induced S-phase arrest via the CCNA2/CDK2/ cyclin-dependent kinase inhibitor 1A (p21CIP1) pathway. Molecular docking and noncovalent interaction analyses showed that 6-methoxyflavone had the strongest affinity toward, inhibitory effect on, and noncovalent interactions with CDK2, and that the combination of CDK2 and CCNA2 enhanced these effects. An analysis of clinical characteristics showed that 6-methoxyflavone might be related to six clinicopathological parameters of cervical cancer patients. 6-Methoxyflavone induces S-phase arrest in HeLa cells via the CCNA2/CDK2/p21CIP1 pathway.


Assuntos
Neoplasias do Colo do Útero , Ciclina A2/metabolismo , Ciclina A2/farmacologia , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Feminino , Flavonas , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Transdução de Sinais , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
18.
Chem Biol Interact ; 353: 109805, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007525

RESUMO

Mollugin has been proven to have anti-tumor activity. However, its potential anti-tumor mechanism remains to be fully elaborated. Herein, we investigated the growth inhibition of HepG2 cells, as well as the anti-tumor effect of mollugin and its molecular mechanism on H22-tumor bearing mice. In vitro, mollugin was shown to have a strong inhibitory effect on HepG2 cells in a concentration-dependent manner. Mollugin induced S-phase arrest of HepG2 cells, and increased intracellular reactive oxygen species (ROS) levels. Comet assay demonstrated that mollugin induced DNA damage in HepG2 cells, as well as an increase in the expression of p-H2AX. In addition, mollugin induced changes in cyclin A2 and CDK2. However, the addition of antioxidant glutathione (GSH) was able to reverse the effect of mollugin. In vivo, mollugin significantly inhibited tumor growth and reduced the tendency of tumor volume growth in mice. The tumor cell density was found to be decreased in the administration group, and the content of ROS in the tumor tissue significantly increased. The expression of p-H2AX, cyclin A2 and CDK2 were consistent with in vitro results. Mollugin demonstrated anti-hepatocellular carcinoma activity in vitro and in vivo, and its anti-hepatocellular carcinoma activity was found to be related to DNA damage and cell cycle arrest induced by excessive ROS production in cells.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Piranos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Antioxidantes/química , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Ciclina A2/genética , Ciclina A2/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Dano ao DNA/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Piranos/química , Piranos/uso terapêutico
19.
Biochem Biophys Res Commun ; 587: 29-35, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34864392

RESUMO

During reprogramming of somatic cells, heightened proliferation is one of the earliest changes observed. While other early events such as mesenchymal-to-epithelial transition have been well studied, the mechanisms by which the cell cycle switches from a slow cycling state to a faster cycling state are still incompletely understood. To investigate the role of Oct-3/4 in this early transition, we created a 4-Hydroxytamoxifen (OHT) dependent Oct-3/4 Estrogen Receptor fusion (OctER). We confirmed that OctER can substitute for Oct-3/4 to reprogram mouse embryonic fibroblasts to a pluripotent state. During the early stages of reprograming, Oct-3/4 and Klf4 individually did not affect cell proliferation but in combination hastened the cell cycle. Using OctER + Klf4, we found that proliferative enhancement is OHT dose-dependent, suggesting that OctER is the driver of this transition. We identified Cyclin A2 as a likely target of Oct-3/4 + Klf4. In mESC, Klf4 and Oct-3/4 bind ∼100bp upstream of Cyclin A2 CCRE, suggesting a potential regulatory role. Using inducible OctER, we show a dose-dependent induction of Cyclin A2 promoter-reporter activity. Taken together, our results suggest that Cyclin A2 is a key early target during reprogramming, and support the view that a rapid cell cycle assists the transition to pluripotency.


Assuntos
Ciclo Celular/genética , Reprogramação Celular/genética , Ciclina A2/genética , Fibroblastos/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Animais , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular , Proliferação de Células , Ciclina A2/metabolismo , Embrião de Mamíferos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel/genética , Fator 4 Semelhante a Kruppel/metabolismo , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Fatores de Tempo , Transdução Genética
20.
Cell Mol Neurobiol ; 42(6): 1765-1776, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33599915

RESUMO

REV-ERBs are heme-binding nuclear receptors that regulate the circadian rhythm and play important roles in the regulation of proliferation and the neuronal differentiation process in neuronal stem/progenitor cells in the adult brain. However, the effects of REV-ERB activation in the adult brain remain unclear. In this study, SR9009, a synthetic REV-ERB agonist that produces anxiolytic effects in mice, was used to treat undifferentiated and neuronally differentiated cultured rat adult hippocampal neural stem/progenitor cells (AHPs). The expression of Rev-erbß was upregulated during neurogenesis in cultured rat AHPs, and Rev-erbß knockdown analysis indicated that REV-ERBß regulates the proliferation and neurite outgrowth of cultured rat AHPs. The application of a low concentration (0.1 µM) of the REV-ERB agonist SR9009 enhanced neurite outgrowth during neurogenesis in cultured rat AHPs, whereas the addition of a high concentration (2.5 µM) of SR9009 suppressed neurite outgrowth. Further examination of the SR9009 regulatory mechanism showed that the expressions of downstream target genes of REV-ERBß, including Ccna2 and Sez6, were modulated by SR9009. The results of this study indicated that REV-ERBß activity in cultured rat AHPs was regulated by SR9009 in a concentration-dependent manner. Furthermore, SR9009 inhibited the growth of cultured rat AHPs through various pathways, which may provide insight into the multifunctional mechanisms of action associated with SR9009. The findings of this study may provide an improved understanding of proliferation and neuronal maturation mechanisms in cultured rat AHPs through SR9009-regulated REV-ERBß signaling pathways.


Assuntos
Células-Tronco Neurais , Crescimento Neuronal , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Pirrolidinas , Tiofenos , Animais , Proliferação de Células , Ciclina A2/metabolismo , Hipocampo/citologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Pirrolidinas/farmacologia , Ratos , Tiofenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...